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2 Dipartimento di Scienze Fisiche, Università di Napoli Federico II, Complesso Universitario MSA, Via Cintia I,
80126 Napoli, Italy

3 INFN, Sezione di Napoli, Napoli, Italy
4 Center of Theoretical Studies and Institute for Theoretical Physics, Leipzig University, Vor dem Hospitaltore 1,
04009 Leipzig, Germany

Received: 25 June 2007 / Revised version: 16 August 2007 /
Published online: 13 September 2007 − © Springer-Verlag / Società Italiana di Fisica 2007

Abstract. The low-temperature asymptotic expressions for the Casimir interaction between two real metals
described by the Leontovich surface impedance are obtained in the framework of thermal quantum field the-
ory. It is shown that the Casimir entropy computed using the impedance of infrared optics vanishes in the
limit of zero temperature. By contrast, the Casimir entropy computed using the impedance of the Drude
model attains at zero temperature a positive value, which depends on the parameters of a system, i.e., the
Nernst heat theorem is violated. Thus, the impedance of infrared optics withstands the thermodynamic test,
whereas the impedance of the Drude model does not. We also perform a phenomenological analysis of the
thermal Casimir force and of the radiative heat transfer through a vacuum gap between real metal plates.
The characterization of a metal by means of the Leontovich impedance of the Drude model is shown to be
inconsistent with experiment at separations of a few hundred nanometers. A modification of the impedance
of infrared optics is suggested taking into account relaxation processes. The power of radiative heat transfer
predicted from this impedance is several times less than previous predictions, due to different contributions
from the transverse electric evanescent waves. The physical meaning of low frequencies in the Lifshitz for-
mula is discussed. It is concluded that new measurements of radiative heat transfer are required to find the
adequate description of a metal in the theory of electromagnetic fluctuations.

1 Introduction

During the last few years, complicated problems con-
nected with the concept of quantum fluctuations generated
much interest among specialists in gravitation and cos-
mology, dispersion forces, Bose–Einstein condensation,
nanotechnology, radiative heat transfer and related sub-
jects. Van derWaals and Casimir forces, which are different
kinds of dispersion forces, arise from zero-point oscillations
of the electromagnetic field and thermal photons. They act
between closely spaced macrobodies, between a micropar-
ticle and a macrobody or between two microparticles. The
theory of dispersion forces is based on quantum statisti-
cal physics. For real bodies at temperature T described by
a dielectric permittivity depending only on frequency, the
van der Waals and Casimir forces acting between them are
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calculated in the framework of Lifshitz theory [1–3]. Orig-
inally, Lifshitz theory was developed using the concept of
an oscillating electromagnetic field and the fluctuation–
dissipation theorem. Later, the main equations of this the-
ory, including the famous Lifshitz formula, were rederived
in different formalisms [4–7] and in particular on the basis
of thermal quantum field theory in the Matsubara formu-
lation [8]. The Lifshitz theory was recently used for the
interpretation of many experiments on the measurement of
the Casimir force [9–27], in the application of the Casimir
and van der Waals forces in nanotechnology [28–34], in
Bose–Einstein condensation [35, 36] and also for the de-
scription of radiative heat transfer between two bodies at
different temperatures through a vacuum gap [37–39].
The application of Lifshitz theory to real metallic bod-

ies at nonzero temperature has led to controversial results,
depending on the used model of dielectric permittivity.
If the boundary bodies are described by the free elec-
tron plasma model, the ensuing thermal correction to the
Casimir force [40, 41] is in qualitative agreement with that
obtained for ideal metals on the basis of thermal quantum
field theory in the Matsubara formulation [8, 42]. If, how-
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ever, metal boundaries are described by the Drude model,
which takes relaxation into account, the thermal correc-
tion at short separations is many hundreds times larger
than for ideal metals and two times smaller than the latter
at large separations [43, 44]. In the case of perfect crys-
tal lattices with no impurities, the entropy of a fluctuating
field (i.e., the Casimir entropy) calculated using the Drude
model takes a negative value when the temperature van-
ishes, i.e., the Nernst heat theorem is violated [45–47].
In [48, 49] it was argued that for real metals with impuri-
ties this violation does not occur, but in the case of perfect
crystal lattices the problem remains unsolved. If the di-
electric permittivity of the plasma model is chosen, the
Nernst heat theorem is satisfied [45–47]. Importantly, the
application of the Drude dielectric function was found to
be inconsistent with experiment [19–23]. On the contrary,
the plasma model approach is consistent with experimen-
tal data [50].
Interestingly, a similar problem arises in the theory

of the thermal Casimir force acting between dielectrics.
If the static dielectric permittivity of dielectric materials
is supposed to be finite, Lifshitz theory is found [51, 52]
to be in agreement with thermodynamics. If, however,
the dc conductivity of dielectric materials is taken into
account, the Nernst heat theorem for the entropy of
a fluctuating field is violated [51, 52]. The same is true
in the metal–dielectric configuration [53] depending on
the finiteness of the static permittivity of a dielectric
plate [54, 55]. Thus, thermodynamics provides a test for
the validity of various models of material properties: only
the thermodynamically-consistent models should be used.
In this connection it is notable that just the Drude model of
a metal, which was shown to imply a violation of the Nernst
heat theorem for the Casimir entropy, was found to be in
contradiction with experiments (controversial opinions on
this subject can be found in [56, 57]).
As an alternative to the dielectric model, the optical

properties of a metal surface can be characterized in terms
of the Leontovich surface impedance, together with the
corresponding boundary conditions [58]. In the framework
of the Lifshitz theory it was employed in [59] at zero tem-
perature and in [60, 61] at nonzero temperature. It should
be kept in mind that both models of real metals, the one
based on the frequency-dependent dielectric permittivity
as well as the one using the Leontovich impedance, are ap-
proximations, each having its own range of validity. The
concept of a frequency-dependent permittivity is inappli-
cable in the frequency region of the anomalous skin effect,
where spatial dispersion contributes critically. Physically,
this is explained by the fact that for these frequencies
the penetration depth of the electromagnetic field inside
a metal becomes of the same order as the mean free path
of conduction electrons and remains much less than the dis-
tance traveled by an electron during the period of the field.
As a result, the spatial non-uniformity of the field ren-
ders impossible a macroscopic description in terms of a di-
electric permittivity depending only on the frequency [58].
On the other hand, impedance boundary conditions retain
their validity at the frequencies of the anomalous skin ef-
fect, because the field inside a metal near the surface can

be considered as a plane wave propagating perpendicular
to the surface.
However, Leontovich impedance, though applicable to

the description of the anomalous skin effect, cannot be
used at short separations, where its magnitude is not much
less than unity. The physical reason for this is that with de-
creasing separations the relevant characteristic frequencies
enter the optical region, where the field inside a metal can-
not be considered anymore as propagating perpendicularly
to the metal surface. In this frequency region the concept of
dielectric permittivity depending only on the frequency is
satisfactory (because the distance traveled by an electron
during the period of the field is much less than the pene-
tration depth). However, the magnitude of the dielectric
permittivity is not large enough, and, as a consequence, the
angle of refraction depends on the angle of incidence. Thus,
the impedance boundary condition does not apply.
The explicit analytic forms of the impedance function

are available in the asymptotic regions of the normal and
anomalous skin effect and in infrared optics. As was no-
ticed without a detailed proof in [61], the Casimir entropy
calculated using the impedance of infrared optics van-
ishes when the temperature goes to zero, i.e., the Nernst
heat theorem is satisfied. The same is proved in [62] for
the Casimir entropy calculated with the impedance of the
anomalous skin effect. We stress that at large separations
the impedance approach leads to magnitudes of the ther-
mal Casimir force in qualitative agreement with the case of
ideal metals.
A critical problem of the impedance approach is the

choice of the functional dependence of the impedance func-
tion on the frequency. In [61] it was argued that the impe-
dance function valid in the region around the characteristic
frequency should be extrapolated to lower frequencies, all
the way to the zero Matsubara frequency. In [63] quanti-
tative arguments were adduced in favor of the statement
that the use of different impedance functions within differ-
ent frequency regions in accordancewith their applicability
conditions would be thermodynamically inconsistent. In
the first part of this paper we apply the thermodynamic
test to the impedance function of [39], which provides
a smooth analytic interpolation between the impedances of
the normal skin effect and infrared optics. The substitution
of the interpolated impedance [39] in the Lifshitz formula
presents an explicit example of the situation where differ-
ent impedances are used at Matsubara frequencies belong-
ing to different frequency regions. We present a rigorous
analytic proof that the entropy of a fluctuating field in this
situation goes to a positive value when the temperature
vanishes. In other words, the Lifshitz formula combined
with the interpolated impedance is thermodynamically in-
consistent.
The problem of the thermal correction to the Casimir

force was further discussed in [64–66], where the impedance
of the normal skin effect was used in the computations. In
this approach at a separation of 1 µm the thermal correc-
tion was found to be about 30 times larger than for ideal
metal plates. This was explained by the dominant contri-
bution of the transverse electric evanescent waves of rather
low frequencies. The same impedance function was ap-
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plied [39] to compute the radiative heat transfer through
a vacuum gap between two metal surfaces at different
temperatures. This problem was considered previously
in [67, 68] (and recently in [37, 38]) using the formalism of
dielectric permittivity. As proposed in [39], the problems of
the thermal Casimir force and the radiative heat transfer
through a vacuum gap are closely related and their simul-
taneous investigation can be very fruitful and elucidating.
In the second part of this paper we consider both the

thermal correction to the Casimir force and the power of
radiative heat transfer using different impedance functions
and compare the results with those obtained previously
using the formalism of dielectric permittivity and with ex-
periment. We try to address, from a purely phenomeno-
logical point of view, the radiative heat transfer through
a vacuum gap in connection with the problem of thermal
Casimir force between real metals. The aim of our work on
this subject is to come up with a phenomenological model
for a real metal at room temperature that takes dissipa-
tion into account and is at the same time consistent with
available experimental facts. In view of the existing con-
troversies among theoreticians about the correct way to
do this, it is our view that finding a reasonable empiri-
cal model would be a valuable guide for further theoretical
studies. We perform computations in the framework of two
different formulations of Lifshitz theory along the real and
the imaginary frequency axis. This permits one to specify
the comparative role of the traveling and evanescent waves
in the physical phenomena under consideration and to de-
termine the application range of different approximations.
It is shown that use of the impedance of the normal skin ef-
fect results in enormously large thermal corrections to the
Casimir force at separations of about 200–300 nm, which
are inconsistent with already performed experiments. As
an alternative, a phenomenological generalized impedance
of infrared optics is constructed, taking into account re-
laxation processes specific for this frequency region, which
are not connected with the electron–phonon interactions.
The thermal correction to the Casimir force computed with
the generalized impedance function is shown to be qualita-
tively the same as is known for ideal metals from thermal
quantum field theory in the Matsubara formulation. It is
consistent with all available experimental data. The sug-
gested impedance function is applied to a calculation of
the power of radiative heat transfer between Au plates at
different temperatures. At short separations between the
plates the obtained power of heat transfer per unit area is
several times less than the one predicted previously in the
literature using the dielectric function or the impedance
characteristic for the region of the normal skin effect. Thus
we find that, depending on the chosen model of the metal,
one obtains largely different predictions for both the ther-
mal Casimir force and the power of radiative heat transfer.
This result underlines the crucial role of new experiments
on the precisionmeasurements of the Casimir force and the
power of radiative heat transfer.
The paper is organized as follows. In Sect. 2 we present

two equivalent forms of the Lifshitz formula, which in-
volve evaluating the reflection coefficients for imaginary
and real frequencies, respectively. In Sect. 3 we give the

explicit expressions of the reflection coefficients in terms
of a frequency-dependent dielectric permittivity and in
terms of the Leontovich surface impedance. In Sect. 4 we
demonstrate that the Lifshitz formula combined with the
impedance function of the infrared optics is thermodynam-
ically consistent. In Sect. 5 we prove that the substitution
of the interpolated impedance into the Lifshitz formula re-
sults in a violation of the Nernst heat theorem. Section 6
is devoted to the computation of the thermal correction to
the Casimir force using different impedance functions. The
results are compared with the case of plates made of ideal
metal and with experiment. In Sect. 7 the general expres-
sion for the power per unit area of radiative heat transfer
in terms of the surface impedance is presented. Section 8
contains the results of the computation for radiative heat
transfer with different impedances and dielectric permit-
tivities including the new prediction to be tested experi-
mentally. In Sect. 9 the reader will find our conclusions and
a discussion.

2 Lifshitz formula along the imaginary
and real frequency axis

In this section we consider two thick dissimilar plane par-
allel plates (semispaces) in thermal equilibrium at equal
temperature T , separated by an empty gap of width a.
Let the z axis be perpendicular to the plates. The Lif-
shitz formula [1] represents the van der Waals and Casimir
free energy and force per unit area (i.e., the pressure),
acting between the plates marked by the indices (1) and

(2), in terms of the reflection coefficients r
(1,2)
TM (ω, k⊥) and

r
(1,2)
TE (ω, k⊥) for two independent polarizations of the elec-
tromagnetic field (ω is the frequency and k⊥ is the mag-
nitude of the projection of the wave vector in the plane
of the plates). The transverse magnetic polarization (TM)
means that the magnetic field is perpendicular to the plane
formed by k⊥ and the z axis, while for the transverse elec-
tric polarization (TE) the electric field is perpendicular
to this plane. As was mentioned in the Introduction, in
the literature there are many different derivations of the
Lifshitz formula in the framework of quantum statistical
physics, thermal quantum field theory in the Matsubara
formulation and scattering theory (see, e.g., [4–8]). The fi-
nal results of all derivations are represented in one of two
different forms: as a summation over the Matsubara fre-
quencies along the imaginary frequency axis or, alterna-
tively, as an integral over real frequencies. We begin with
the more often used representation in terms of imaginary
frequencies, where the Casimir free energy and pressure are
given by

F(a, T ) =
kBT

2π

∞∑

l=0

(
1−
1

2
δl0

)∫ ∞

0

k⊥ dk⊥

×
∑

α=TE,TM

ln
[
1− r(1)α (iξl, k⊥)r

(2)
α (iξl, k⊥)e

−2aql
]
,

(1)
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P (a, T ) =−
kBT

π

∞∑

l=0

(
1−
1

2
δl0

)∫ ∞

0

k⊥ dk⊥ql

×
∑

α=TE,TM

[
e2aql

r
(1)
α (iξl, k⊥)r

(2)
α (iξl, k⊥)

−1

]−1
.

(2)

Here ξl = 2πkBT l/h̄ are the Matsubara frequencies, kB
is the Boltzmann constant, l is a non-negative integer,
and

q(ω, k⊥) =

√
k2⊥−

ω2

c2
,

ql ≡ q(iξl, k⊥) =

√
k2⊥+

ξ2l
c2
. (3)

The explicit form of the reflection coefficients r
(1,2)
α is

discussed in the next section. The representation (2) is
convenient in numerical computations due to the fast con-
vergence of both the sum and the integrals.
Using the Abel–Plana formula [8, 69]

∞∑

l=0

(
1−
1

2
δl0

)
F (l) =

∫ ∞

0

F (t)dt

+ i

∫ ∞

0

dt
F (it)−F (−it)

e2πt−1
, (4)

where F (z) is an analytic function in the right half-plane,
(1) and (2) can be identically rearranged in the form

F(a, T ) =E(a)+∆F(a, T ),

P (a, T ) = P0(a)+∆P (a, T ) . (5)

Here E(a) is given by

E(a) =
h̄

4π2

∫ ∞

0

dξ

∫ ∞

0

k⊥dk⊥

×
∑

α=TE,TM

ln
[
1− r(1)α (iξ, k⊥)r

(2)
α (iξ, k⊥)e

−2aq
]
,

(6)

with q ≡ q(iξ, k⊥) defined in (3). The other contribution on
the right-hand side of the first equality in (5) can be repre-
sented in the form

∆F(a, T ) =
ikBT

2π

∫ ∞

0

dt
Φ(iξ1t)−Φ(−iξ1t)

e2πt−1
, (7)

where Φ(x) ≡ ΦTM(x)+ΦTE(x) and

ΦTM,TE(x) =

∫ ∞

0

k⊥ dk⊥

× ln

⎡

⎣1− r(1)TM,TE(ix, k⊥)r
(2)
TM,TE(ix, k⊥)e

2a

√
k2
⊥
+x
2

c2

⎤

⎦ .

(8)

In a similar way, the quantities P0(a) and ∆P (a, T ) in the
second equality in (5) are equal to

P0(a) =−
h̄

2π2

∫ ∞

0

dξ

∫ ∞

0

k⊥ dk⊥q

×
∑

α=TE,TM

[
e2aq

r
(1)
α (iξ, k⊥)r

(2)
α (iξ, k⊥)

−1

]−1
,

(9)

∆P (a, T ) =−
ikBT

π

∫ ∞

0

dt
F (iξ1t)−F (−iξ1t)

e2πt−1
, (10)

where F (x)≡ FTM(x)+FTE(x) and

FTM,TE(x) =

∫ ∞

0

k⊥ dk⊥

√
k2⊥+

x2

c2

×

⎡

⎢⎢⎣
e
2a

√
k2⊥+

x2

c2

r
(1)
TM,TE(ix, k⊥)r

(2)
TM,TE(ix, k⊥)

−1

⎤

⎥⎥⎦

−1

.

(11)

Note that the quantities E(a) and P0(a) in (6) and (9)
are often called in the literature the Casimir energy and
pressure at zero temperature, and ∆F(a, T ) and ∆P (a, T )
in (7) and (10) are referred to as the thermal corrections
to them. This terminology is, however, correct only for
plate materials with temperature-independent properties.
In this case the Casimir free energy and pressure depend on
temperature only through the Matsubara frequencies and
the thermal corrections defined as F(a, T )−F(a, 0) and
P (a, T )−P (a, 0) coincide with ∆F(a, T ) and ∆P (a, T )
in (7) and (10). If, however, the properties of a medium (for
instance, the dielectric permittivity) depend on the tem-
perature, then the thermal corrections F(a, T )−F(a, 0)
and P (a, T )−P (a, 0) do not coincide with ∆F(a, T ) and
∆P (a, T ). Even in this case (5) can be used to compute
the total Casimir free energy and pressure. In so doing,
the quantities E(a) and P0(a) in (6) and (9) can be inter-
preted as the contributions to the total Casimir free en-
ergy and pressure due to zero-point oscillations [they may
depend on the temperature as a parameter, i.e., in fact
E(a) = E(a, T ) and P0(a) = P0(a, T )] and the quantities
∆F(a, T ) and ∆P (a, T ) in (7) and (10) as the contribu-
tions from thermal photons.
It is useful to express the Casimir free energy and pres-

sure as the integrals over real frequencies ω:

F(a, T ) =
h̄

4π2

∫ ∞

0

dω

∫ ∞

0

dk⊥k⊥ coth

(
h̄ω

2kBT

)

× Im
∑

α=TE,TM

ln
[
1− r(1)α (ω, k⊥)r

(2)
α (ω, k⊥)e

2ikza
]
,

(12)
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P (a, T ) =−
h̄

2π2

∫ ∞

0

dω

∫ ∞

0

dk⊥k⊥ coth

(
h̄ω

2kBT

)

×Re

⎧
⎨

⎩kz
∑

α=TE,TM

[
1−

e−2ikza

r
(1)
α (ω, k⊥)r

(2)
α (ω, k⊥)

]−1⎫⎬

⎭ ,

(13)

where

kz(ω, k⊥)≡
√
ω2/c2−k2⊥ = iq(ω, k⊥) . (14)

We note that real values of kz correspond to propagating
waves (PW), while imaginary values of kz describe evanes-
cent waves (EW). Upon using the identity

coth(x/2) = 1+
2

exp(x)−1
, (15)

we see that the formula for the Casimir pressure can be
expressed as the sum of two terms, like in (5),

P (a, T ) = P0(a, T )+∆P (a, T ) , (16)

where

P0(a, T ) =−
h̄

2π2

∫ ∞

0

dω

∫ ∞

0

dk⊥k⊥

×Re

⎧
⎨

⎩kz
∑

α=TE,TM

[
1−

e−2ikz a

r
(1)
α (ω, k⊥)r

(2)
α (ω, k⊥)

]−1⎫⎬

⎭ ,

(17)

and

∆P (a, T ) =−
h̄

π2

∫ ∞

0

dω

∫ ∞

0

dk⊥k⊥
1

exp
(
h̄ω
kBT

)
−1

×Re

⎧
⎨

⎩kz
∑

α=TE,TM

[
1−

e−2ikza

r
(1)
α (ω, k⊥)r

(2)
α (ω, k⊥)

]−1⎫⎬

⎭ .

(18)

Similar representations can easily be obtained for E(a, T )
and ∆F(a, T ). As was already noted above, P0(a, T ) phys-
ically represents the contribution to the pressure from zero-
point fluctuations of the electromagnetic field, and in gen-
eral it depends on the temperature, because the permittiv-
ities or surface impedances of the plates are temperature
dependent. As for ∆P (a, T ), it represents the contribution
from thermally excited electromagnetic fields, and it van-
ishes for T = 0. For this reason, in what follows we shall
conventionally refer to ∆P (a, T ) as the thermal correction
to the Casimir pressure. We further consider the decom-
position

∆P (a, T ) = ∆PPW(a, T )+∆PEW(a, T ) , (19)

where ∆PPW(a, T ) and ∆PEW(a, T ) represent the contri-
butions from PW and EW, respectively. It is easily seen

from (18) that ∆PPW(a, T ) can be written as

∆PPW(a, T ) =−
h̄

π2

∫ ∞

0

dω
1

exp
(
h̄ω
kBT

)
−1

∫ ω/c

0

dkzk
2
z

×
∑

α=TE,TM

Re

[
1−

e−2ikza

r
(1)
α (ω, k⊥)r

(2)
α (ω, k⊥)

]−1
. (20)

For EW it holds k⊥ > ω/c and Im(kz) = q. As a result
∆PEW(a, T ) takes the form

∆PEW(a, T ) =
h̄

π2

∫ ∞

0

dω
1

exp
(
h̄ω
kBT

)
−1

∫ ∞

0

dqq2

×
∑

α=TE,TM

Im

[
1−

e2 q a

r
(1)
α (ω, k⊥)r

(2)
α (ω, k⊥)

]−1
.

(21)

It should be noted that ∆PEW(a, T ) vanishes in the case

of ideal metals, because for r
(1)
α r

(2)
α = 1 the quantity be-

tween square brackets in the above equation is real. In fact,
more generally ∆PEW(a, T ) vanishes whenever the prod-

uct of the reflection coefficients r
(i)
α is real and less than

or equal to unity, because then the quantity between the
square brackets in (21) is real and has no zeroes. This is
the case for example for TE EW, if the metal plates are
described by the plasma model (see below).

3 Reflection coefficients in terms
of the dielectric permittivity
and the surface impedance

In Lifshitz theory the material media are described by di-
electric permittivities that depend only on frequency [1–3].
The description of the dielectric properties of a medium by
ε(ω) takes full account of temporal dispersion but neglects
possible contributions to the van der Waals and Casimir
force from spatial dispersion. In the formalism of the imag-
inary frequency axis [see (1) and (2)] the reflection coeffi-
cients are expressed in terms of the dielectric permittivity
as follows:

r
(n)
TM(iξl, k⊥) =

ε(n)(iξl)ql−k
(n)
l

ε(n)(iξl)ql+k
(n)
l

,

r
(n)
TE(iξl, k⊥) =

k
(n)
l − ql

k
(n)
l + ql

, (22)

where n= 1, 2 for the first and the second plates, respec-
tively, and

k(n)(ω, k⊥) =

√
k2⊥− ε

(n)(ω)
ω2

c2
,

k
(n)
l ≡ k(n)(iξl, k⊥) =

√
k2⊥+ ε

(n)(iξl)
ξ2l
c2
. (23)
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In the formalism of real frequency axis used in (12) and
(13) the reflection coefficients are just (22), but calculated
at real frequencies,

r
(n)
TM(ω, k⊥) =

ε(n)(ω)q(ω, k⊥)−k(n)(ω, k⊥)

ε(n)(ω)q(ω, k⊥)+k(n)(ω, k⊥)
,

r
(n)
TE(ω, k⊥) =

k(n)(ω, k⊥)− q(ω, k⊥)

k(n)(ω, k⊥)+ q(ω, k⊥)
. (24)

The reflection properties of electromagnetic waves on
metal surfaces are often described in terms of the Leon-
tovich surface impedance [58]. For isotropic metal surfaces
the surface impedance relates the tangential components of
electric field and magnetic induction in the same way as in
a plane wave propagating in the interior of a metal perpen-
dicular to its surface [58],

Et = Z(ω) [Bt×n] . (25)

Here n is the unit vector normal to the surface and dir-
ected inside the medium. For an ideal metal Z = 0. The
boundary condition (25) is valid when |Z| � 1. For good
conductors this inequality is satisfied within a wide fre-
quency region. Equation (25) permits one to determine
the electromagnetic field outside the metal, without con-
sidering the propagation of electromagnetic waves in the
metal interior. It is close in spirit to the original Casimir
approach for ideal metals and to the so-called “nonlocal”
boundary condition [70] implied by a dielectric permittiv-
ity depending only on the frequency. The latter condition
is in fact equivalent to the standard continuity bound-
ary conditions in classical electrodynamics, but it does not
require one to consider field propagation inside a metal.
Both the standard continuity conditions and the “nonlo-
cal” boundary condition are based on the spatially local
relation D(x, ω) = ε(ω)E(x, ω), which assumes space ho-
mogeneity. Therefore, these boundary conditions do not
take into account the effects of spatial dispersion. As a con-
sequence, the standard Lifshitz formula is applicable only
in the absence of spatial dispersion. An advantage of the
surface impedance, as compared with dielectric permittiv-
ity, is that it permits [59] one to apply the Lifshitz formula
in the region of the anomalous skin effect, where the spatial
homogeneity is violated and the effects of spatial dispersion
should be taken into consideration. In [71] the applicabil-
ity of the condition (25) in the region of the anomalous
skin effect is demonstrated from the solution of the kinetic
equations. In this frequency region, a metal cannot be char-
acterized by a dielectric permittivity depending only on
frequency and, thus, the standard Lifshitz formula is not
applicable [72] (the Leontovich impedance, however, can-
not be used at short separations between the plates, where
the condition |Z| � 1 is violated; see the Introduction). In
the frequency regions where both quantities ε(ω) and Z(ω)
are well defined, we have

Z(ω) = 1/
√
ε(ω) . (26)

In optics of metals the reflection coefficients are usually
expressed in terms ofZ(ω) rather than ε(ω) [58]. In [59] the

Leontovich surface impedance was used to express the re-
flection coefficients in the Lifshitz formula at zero tempera-
ture. The thermal Casimir force was presented in terms of
the surface impedance in [60]. The derivation of the Lif-
shitz formula starting from the impedance boundary con-
dition (25) is contained in [61]. Importantly, as was shown
in [61], the use of the Leontovich impedance leads to results
for the thermal Casimir force between real metals different
from the ones that are obtained by the use of the Drude
dielectric function in [43]. The thermal Casimir force com-
puted within the impedance approach was demonstrated
to be in qualitative agreement with the case of ideal metals
and in accordance with the fundamentals of thermody-
namics and with experiment. (The controversies between
different approaches to the thermal Casimir force are dis-
cussed in detail in [49, 57, 73, 74].)
Using the Leontovich surface impedance instead of the

dielectric permittivity, the reflection coefficients in (1) and
(2) (in the formalism of the imaginary frequency axis) are
given by

r
(n)
TM(iξl, k⊥) =

cql−Z(n)(iξl)ξl
cql+Z(n)(iξl)ξl

,

r
(n)
TE(iξl, k⊥) =

ξl− cqlZ(n)(iξl)

ξl+ cqlZ(n)(iξl)
. (27)

In the formalism of the real frequency axis, the re-
flection coefficients expressed in terms of the Leontovich
impedance are

r
(n)
TM(ω, k⊥) =

ckz(ω, k⊥)−Z(n)(ω)ω

ckz(ω, k⊥)+Z(n)(ω)ω
,

r
(n)
TE(ω, k⊥) =

ω− ckz(ω, k⊥)Z(n)(ω)

ω+ ckz(ω, k⊥)Z(n)(ω)
, (28)

where kz is defined in (14). An important problem arising
in the case of real metals is the adequate choice of the func-
tions ε(ω) and Z(ω).
The calculation of the surface impedance over the whole

frequency axis is based on kinetic theory [71]. Here we are
interested in two frequency regions. One of them is the in-
frared optics defined by the inequalities

vF

ω
� δi� l(T ) , ω� ωp, (29)

where vF is the Fermi velocity, l(T ) is the mean free path
of a conduction electron, δi = c/ωp is the skin depth and
ωp = 2πc/λp is the plasma frequency. The other frequency
region of our interest is the region of the normal skin effect
characterized by the inequalities

l(T )� δN(ω, T ) , l(T )�
vF

ω
, (30)

where δN(ω, T ) = c/
√
2πσ0(T )ω and σ0(T ) is the static

electric conductivity.
In the frequency regions (29) and (30), both the dielec-

tric permittivity and the impedance have definite physical
meanings and are connected by (26). In the region of the
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infrared optics we have

εi(ω) = 1−
ω2p

ω2
, Zi(ω) =−i

ω√
ω2p−ω

2
. (31)

For the normal skin effect (30) we have

εN(ω)≡ εN(ω, T ) = i
4πσ0(T )

ω
,

ZN(ω)≡ ZN(ω, T ) = (1− i)

√
ω

8πσ0(T )
. (32)

Let us consider two plates at room temperature, T =
300K, at the same separation distance of a few hundred
nanometers as in [39]. In this case, the respective charac-
teristic frequency of the Casimir effectΩc = c/(2a) belongs
to the region of infrared optics; see (29). (As an example,
at a = 400 nm, Ωc = 3.75×1014 rad/s and for gold ωp ≈
1.37×1016 rad/s and vF ≈ 1.78×106m/s.) In the Lifshitz
formulas (1), (2) and (12), (13) the frequencies of order
ωp and higher practically do not contribute to the result.
All Matsubara frequencies ξl in (1) and (2) that contribute
to the result essentially belong to the region of infrared
optics (29) with the exception of ξ0 = 0, which belongs
to the region of the normal skin effect (30) (recall that
ξ1 = 2.47×1014 rad/s). Real frequencies in (12) and (13),
contributing to the result, also belong to the region of in-
frared optics (29) and to the normal skin effect (30).
In [39] the correlation functions of a fluctuating elec-

tromagnetic field were expressed in terms of the surface
impedance. The developed formalism was applied to the
derivation of the Lifshitz formulas (12) and (13) along the
real frequency axis and to the description of the radiation
heat transfer between two semispaces at different tempera-
tures. We consider the impedance function defined by the
Drude dielectric function that was used in [39]

ZD(ω) =
1√
εD(ω)

, εD(ω) = 1−
ω2p

ω[ω+ iγ(T )]
.

(33)

Here γ(T ) is the relaxation parameter connected with the
parameters used above by the equation [75]

ω2p = 4πγ(T )σ0(T ) =
4πσ0(T )

τ(T )
, (34)

where τ = 1/γ is the relaxation time. In the region of in-
frared optics we have γ(T )� ω. As a result, ZD and εD
in (33) coincide with Zi and εi in (31), respectively. At
small frequencies, on the contrary, one can neglect ω, as
compared to γ, and from (34) ZD and εD in (33) coincide
with ZN and εN in (32) describing the frequency region
of the normal skin effect. Therefore, (33) provides an ex-
pression of the impedance that is valid in both frequency
regions of the normal skin effect and infrared optics, and it
represents a smooth analytic interpolation between the two
regions.
Below we demonstrate that the impedance of infrared

optics, Zi, extrapolated to all lower frequencies, includ-
ing zero frequency, leads to zero entropy of a fluctuating

field at T = 0 (Sect. 4). At the same time, the entropy of
a fluctuating field calculated using the impedance of the
Drude model in (33) approaches a nonzero positive value
when the temperature vanishes (Sect. 5), hence violating
thermodynamics.

4 Thermodynamic test for the surface
impedance of infrared optics

We consider the free energy of a fluctuating field given
by (1) and (12) with reflection coefficients (27) and (28)
and the impedance function (31). Our aim is to find
the asymptotic behavior of the free energy and entropy
of a fluctuating field at low temperatures at separa-
tion distances between two similar plates of a few hun-
dred nanometers, so that the characteristic frequency
Ωc belongs to the region of infrared optics. The per-
turbation expansions in powers of the small parameter
κ≡ 4πkBaT/(h̄c) can be conveniently carried out by using
the dimensionless variables

ζl ≡
ξl

Ωc
=
2aξl
c
= κl , y = 2aql . (35)

In terms of these variables the free energy of the fluctuating
field, (1), takes the form

F(a, T ) =
h̄cκ

32π2a3

∞∑

l=0

(
1−
1

2
δ0l

)∫ ∞

ζl

ydy

×
∑

α=TM,TE

ln
[
1− r2α(iζl, y)e

−y
]
. (36)

Using the variables (35), the reflection coefficients (27) are

rTM(iζl, y) =
y−Z(iζlΩc)ζl
y+Z(iζlΩc)ζl

,

rTE(iζl, y) =
ζl−yZ(iζlΩc)

ζl+yZ(iζlΩc)
. (37)

Here, the impedance function of infrared optics (31) is
given by

Z(iζlΩc)≡ Zi(iζlΩc) =
ρζl√
1+ρ2ζ2l

, (38)

where ρ ≡ λp/(4πa) = δi/(2a) is much less than unity
throughout the entire region of application of the impe-
dance approach.
In terms of the new variables the Casimir energy at T =

0 in (6) is given by

E(a) =
h̄c

32π2a3

∫ ∞

0

dζ

∫ ∞

ζ

f(ζ, y)dy (39)

and the thermal correction to it (7) by

∆F(a, T ) =
ih̄cκ

32π2a3

∫ ∞

0

dt
Φ(iκt)−Φ(−iκt)

e2πt−1
, (40)
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where the following notation is used:

f(ζ, y) = y ln
[
1− r2TM(iζ, y)e

−y
]

+y ln
[
1− r2TE(iζ, y)e

−y
]
,

Φ(x) ≡

∫ ∞

x

dyf(x, y) . (41)

Now, we expand the function f defined in (41) in powers
of the small parameter ρ using (37) and (38):

f(x, y) = 2y ln(1− e−y)+4ρ
x2+y2

ey−1

−8ρ2
(x4+y4)ey

y(ey−1)2
+O(ρ3) . (42)

Substituting (42) into the definition of Φ in (41), we
obtain

Φ(x) = I0(x)+ρI1(x)+ρ
2I2(x)+O(ρ

3) , (43)

where

I0(x) = 2

∫ ∞

x

ydy ln(1− e−y) ,

I1(x) = 4

∫ ∞

x

dy
x2+y2

ey−1
,

I2(x) =−8

∫ ∞

x

dy
(x4+y4)ey

y(ey−1)2
. (44)

The integrals I0(x) and I1(x) are easily calculated [76]
and are given by

I0(x) =−2
[
Li3(e

−x)+xLi2(e
−x)

]

=−2ζ(3)+
1

2
x2−x2 lnx+

1

3
x3+O(x4) ,

I1(x) = 8
[
Li3(e

−x)+xLi2(e
−x)−x2 ln(1− e−x)

]

= 8

[
ζ(3)−

1

4
x2−

1

2
x2 lnx+

1

3
x3+O(x4)

]
,

(45)

where LiN(z) is the polylogarithm function and ζ(x) is the
Riemann zeta function. As to the integral I2(x) in (44), it
is easily seen that

I2(x) =−48ζ(3)+O(x
4) (46)

and, thus, I2(x) does not contribute to Φ(iκt)−Φ(−iκt) in
the perturbation orders under consideration.
Substituting (45) into (43), we obtain

Φ(iκt)−Φ(−iκt) = πi(κt)2−
2

3
i(κt)3

+4ρ

[
πi(κt)2−

4

3
i(κt)3

]
+O

[
(κt)4

]
.

(47)

Now, it is easy to calculate the free energy of the fluctu-
ating field at small κ from (5), (39), (40) and (47):

Fi(a, T ) =E(a)−
π2h̄c

720a3

[
45ζ(3)

8π6
κ3−

1

16π4
κ4

+
45ρ

π4

(
ζ(3)

2π2
κ3−

1

90
κ4

)]
. (48)

It is convenient to introduce the so-called effective tem-
perature kBTeff = h̄Ωc and to use the effective penetra-
tion depth of electromagnetic oscillations into a metal
(29) in the frequency region of infrared optics, δi = c/ωp =
λp/(2π). Then, (48) can be rearranged in the form

F(a, T ) =E(a)−
π2h̄c

720a3

{
45ζ(3)

π3

(
T

Teff

)3
−

(
T

Teff

)4

+
δi

a

[
90ζ(3)

π3

(
T

Teff

)3
−4

(
T

Teff

)4]}
. (49)

In the above, we have restricted our consideration to the
second perturbation order in the small parameter ρ. In the
same way as in [77] it can be shown that the higher per-
turbation orders in ρ contain only terms of order O(κn)
with n ≥ 5. It is notable that (49) coincides [45–47] with
the free energy of the fluctuating field at low tempera-
tures obtained from the Lifshitz formula combined with
the dielectric permittivity of the plasma model εi(ω)
in (31). Thus, the characterization of a metal by means
of the dielectric permittivity and the Leontovich surface
impedance in the frequency region of infrared optics leads
to the same asymptotic behavior of the free energy at low
temperatures.
The asymptotic behavior of the entropy of a fluctuating

field defined as

S(a, T ) =−
∂F(a, T )

∂T
(50)

can be found by differentiating (49):

Si(a, T ) =
3kB
8πa2

(
T

Teff

)2 [
ζ(3)−

4π3

135

T

Teff

+
δi

a

(
2ζ(3)−

16π3

135

T

Teff

)]
. (51)

As is seen in (51), the entropy goes to zero when the tem-
perature vanishes in accordance to the Nernst heat theo-
rem. Thus, the Leontovich impedance of the infrared optics
withstands the thermodynamic test. The Lifshitz formu-
las (1) and (12) combined with the impedance of infrared
optics are shown to be consistent with the requirements of
thermodynamics.

5 Thermodynamic test for the surface
impedance of the Drude model

In the previous section we have extrapolated the imped-
ance function of infrared optics to all lower frequencies,
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including zero frequency. However, in the Lifshitz formula,
(1), the zero Matsubara frequency is situated outside the
region of infrared optics. In a similar manner, small real
frequencies in the Lifshitz formula (12) satisfy the inequal-
ities (30) and, thus, belong to the region of the normal
skin effect. Because of this, it seems reasonable to use
the impedance function (33), which coincides with the
impedances of infrared optics and of normal skin effect
at high and low frequencies, respectively, and which pro-
vides a smooth analytic interpolation between the two
frequency regions. In this section we put the Lifshitz for-
mulas, (1) and (12), combined with the impedance of the
Drude model (33) to a thermodynamic test.
For l ≥ 1 one can introduce the dimensionless variable

xl = γ(T )/ξl and rearrange the impedance of the Drude
model (33) in the form

ZD(iξl) = ZD(iζlΩl) =
ρζl√

ρ2ζ2l +
1
1+xl

. (52)

If the relaxation parameter γ(T ) is equal to zero, xl = 0
and (52) coincides with (38) for the impedance of infrared
optics. It is easily seen that for metals with perfect crys-
tal lattices xl � 1 at sufficiently low T . In fact, for T =
300K for goodmetals, γ ∼ 1013–1014 rad/s holds (as an ex-
ample, for gold γ = 5.32×1013 rad/s), whereas ξl = ξ1l and
ξ1 = 2πkBT/h̄ = 2.46×1014 rad/s leading to xl = γ/ξl <
0.22. When T decreases from T = 300K to approximately
TD/4, where TD is the Debye temperature (for gold TD =
165K [78]), γ(T ) decreases linearly, γ(T )∼ T , i.e., follow-
ing the same law as ξl. At T < TD/4 the relaxation par-
ameter decreases according to the Bloch–Grüneisen law,
γ(T ) ∼ T 5, due to electron–phonon collisions [75] and as
γ(T )∼ T 2 at liquid helium temperatures due to electron–
electron scattering [78]. At T = 30K and 10 K we have
γ(T )/ξ1(T )≈ 4.9×10−2 and 1.8×10−3, respectively. The
magnitude of parameter xl decreases further to zero with
T → 0.
We represent the free energy of the fluctuating field in

(36) in the form

FD(a, T ) = F
(l=0)
D (a, T )+F (l≥1)D (a, T ) , (53)

where we separate the terms with zero and nonzero Mat-
subara frequencies. Substituting the impedance function,
(33), in the reflection coefficients, (37), one obtains

r2TM(0, y) = r
2
TE(0, y) = 1 , (54)

which leads to

F (l=0)D (a, T ) =
kBT

8πa2

∫ ∞

0

ydy ln
(
1− e−y

)
. (55)

The contribution from Matsubara frequencies with
l ≥ 1, F (l≥1)D (a, T ), is more cumbersome. We will find
its low-temperature asymptotic behavior perturbatively.
With this purpose we expand ZD in (52) in powers of

a small parameter xl:

ZD(iζlΩc) =
ρζl√
1+ρ2ζ2l

+
(ρζl)

−2xl

2[1+(ρζl)−2]3/2
+O(x2l )

= Zi(iζlΩc)+ x̃l+O(x
2
l ) , (56)

where the impedance of infrared optics, Zi, is defined
in (38) and

x̃l ≡
γ(T )

2ωp
(1+ρ2ζ2l )

−3/2� 1 . (57)

Now, we substitute (56) in (36) with zero-frequency contri-

bution omitted and expand F (l≥1)D (a, T ) in powers of x̃l,
keeping only the first order term:

F
(l≥1)
D (a, T ) = F

(l≥1)
i (a, T )+

kBT

2πa2

∞∑

l=1

ζlx̃l

∫ ∞

ζl

y2dye−y

×

{
−y+ ζlZi(iζlΩc)

ATM
+
ζl−yZi(iζlΩc)

ATE

}

+O(x̃2l ) , (58)

where

ATM = [y+ ζlZi(iζlΩc)]

×
[
(e−y−1)

(
y2+ ζ2l Z

2
i (iζlΩc)

)

−2(e−y+1)ζlyZi(iζlΩc)
]
,

ATE = [ζl+yZi(iζlΩc)]

×
[
(e−y−1)

(
ζ2l +y

2Z2i (iζlΩc)
)

−2(e−y+1)ζlyZi(iζlΩc)
]
.

Here F (l≥1)i (a, T ) is the free energy of the fluctuating field,
computed by using the impedance of infrared optics (38),
with the contribution from the zero Matsubara frequency
omitted. As a next step, we expand the integrand in (58) in
powers of a small impedance of infrared optics, Zi(iζlΩc),
and retain only the zero order contribution [recall that
Zi(iζlΩc) goes to zero when T vanishes]:

F (l≥1)D (a, T ) = F (l≥1)i (a, T )

+
kBT

2πa2

∞∑

l=1

x̃l

∫ ∞

ζl

dy

1− ey

(
−ζl+

y2

ζl

)

+O
[
Zi(iζlΩc)x̃l, x̃

2
l

]
. (59)

Bearing in mind the definition of x̃l in (57), the sum in (59)
takes the form

Σ =
γ(T )

2ωp

∞∑

l=1

(
1+ρ2ζ2l

)−3/2
∫ ∞

ζl

dy

1− ey

(
−ζl+

y2

ζl

)
.

(60)

Now we expand the integrand in (60) in powers of e−y and
introduce the new variable v = jy, where j = 1, 2, 3, . . .
Thus, we obtain

Σ =
γ(T )

2ωp

∞∑

l=1

(
1+ρ2ζ2l

)−3/2 ∞∑

j=1

1

j

∫ ∞

jζl

dve−v
(
ζl−

v2

j2ζl

)
.

(61)
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After the integration with respect to v, this leads to

Σ =−
γ(T )

ωp

∞∑

l=1

(
1+ρ2ζ2l

)−3/2 ∞∑

j=1

1

j2

(
1

jζl
+1

)
e−jζl .

(62)

By expanding in powers of ρζl ≡ ρκl and performing the
summation in l we obtain

Σ =
γ(T )

ωp

⎧
⎨

⎩
1

κ

∞∑

j=1

1

j3
ln

(
1− e−jκ

)
−
∞∑

j=1

1

j2(ejκ−1)

+
3

2
ρ2κ2

⎡

⎣1
κ

∞∑

j=1

e−jκ

j3(1− e−jκ)2
+
∞∑

j=1

e−jκ(1+e−jκ)

j2(1− e−jκ)3

⎤

⎦

+O(ρ4κ4)
}
. (63)

In the asymptotic limit κ→ 0, (63) results in

Σ ≈
γ(T )

ωp

lnκ

κ
ζ(3)+

γ(T )

ωp
O

(
1

κ

)
. (64)

The substitution of this expression into (59) leads to

F (l≥1)D (a, T ) = F (l≥1)i (a, T )+
kBTγ(T )

2πa2ωp

lnκ

κ
ζ(3)

+O
[
Zi(iζlΩc)x̃l, x̃

2
l

]
+
kBTγ(T )

2πa2ωp
O

(
1

κ

)
.

(65)

Now we are in a position to find the asymptotic ex-
pression at small κ for the free energy computed using
the impedance of the Drude model. First we add the zero-
frequency term F (l=0)D (a, T ), defined in (55), to both sides
of (65). On the left-hand side of this equation the quan-
tity FD(a, T ) is obtained. On the right-hand side of (65) we
add and subtract the zero-frequency term of the free en-
ergy computed using the impedance of the plasma model.
This term is obtained from (36)–(38):

F (l=0)i (a, T ) =
kBT

16πa2

∫ ∞

0

ydy

{
ln(1− e−y)

+ ln

[
1−

(
1−ρy

1+ρy

)2
e−y

]}
. (66)

The term (66), together with the first term on the right-
hand side of (65), gives us the free energy Fi(a, T ) com-
puted using the impedance of infrared optics. As a result,
from (65) it follows that

FD(a, T ) = Fi(a, T )+∆F
(l=0)
i (a, T )

+
kBTγ(T )

2πa2ωp

lnκ

κ
ζ(3)+O

[
Zi(iζlΩc)x̃l, x̃

2
l

]

+
kBTγ(T )

2πa2ωp
O

(
1

κ

)
, (67)

where

∆F (l=0)i (a, T ) = F (l=0)D (a, T )−F (l=0)i (a, T )

=
kBT

16πa2

∫ ∞

0

ydy

{
ln

(
1− e−y

)

− ln

[
1−

(
1−ρy

1+ρy

)2
e−y

]}

=−
kBT

16πa2

{
ζ(3)

+

∫ ∞

0

ydy ln

[
1−

(
1−ρy

1+ρy

)2
e−y

]}
.

(68)

Taking into account that κ ∼ T and at low temperatures
γ(T )∼ T 2, Zi(iζlΩc)∼ T and x̃l ∼ γ ∼ T 2, we arrive at the
conclusion that not only the last three terms on the right-
hand side of (67) vanish when the temperature vanishes,
but also their derivatives with respect to temperature van-
ish.
Using (50), we can find the asymptotic behavior of the

free energy and entropy of the fluctuating field at low tem-
peratures in the case that the metal is described by the
impedance of the Drude model. Keeping only the main
terms of order T and T 2 lnT in (67) [recall that according
to (49) Fi(a, T )−E(a)∼ T 3], we obtain

FD(a, T ) =E(a)+∆F
(l=0)
i (a, T )

+
kBTγ(T )

2πa2ωp

lnκ

κ
ζ(3) , (69)

SD(a, T ) =−
∂∆F (l=0)i (a, T )

∂T

−
kBζ(3)

2π2a2
γ(T )

ωp

Teff

T

(
lnκ+

1

2

)

=
kB

16πa2

×

{
ζ(3)+

∫ ∞

0

ydy ln

[
1−

(
1−ρy

1+ρy

)2
e−y

]}

−
kBζ(3)

2π2a2
γ(T )

ωp

Teff

T

[
ln

(
2π
T

Teff

)
+
1

2

]
.

Expanding the integrand on the right-hand side of the sec-
ond equality in (69) in powers of ρ and integrating with
respect to y, we arrive at

SD(a, T ) =
kBζ(3)

2πa2
ρ
[
1−6ρ+O(ρ2)

]

−
kBζ(3)

2π2a2
γ(T )

ωp

Teff

T

[
ln

(
2π
T

Teff

)
+
1

2

]
.

(70)

To carry out the thermodynamic test of the impedance of
the Drude model, we consider T approaching zero and find
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the following value of the entropy:

SD(a, 0) =
kB

16πa2

{
ζ(3)

+

∫ ∞

0

ydy ln

[
1−

(
1−ρy

1+ρy

)2
e−y

]}

=
kBζ(3)

2πa2
ρ
[
1−6ρ+O(ρ2)

]
> 0 . (71)

As is seen from (71), the entropy of the fluctuating field
at zero temperature takes a nonzero positive value. This
value depends on the parameters of the system, i.e., on
the separation distance a, and on the plasma frequency
ωp. The latter participates through the definition of ρ (re-
call that for metals without impurities described by εD the
Casimir entropy at T = 0 is negative [45–47]). What this
means is that we have a violation of the third law of ther-
modynamics, the Nernst heat theorem [79].
In the above calculations we have considered the en-

tropy associated with the fluctuating field. In other words,
only the distance-dependent part of the total free energy
was considered. However, inclusion of the self-energies can-
not invalidate our conclusion on the violation of the Nernst
heat theorem. The reason is that the entropy of a fluc-
tuating field in (71) depends on the separation distance,
whereas the entropies due to self-energies are separation in-
dependent. As a consequence, the entropy of a fluctuating
field and the entropies of matter fields cannot cancel each
other and must satisfy the Nernst heat theorem separately.
Thus, the Leontovich impedance of the Drude model

is thermodynamically inconsistent and cannot be used in
combination with the Lifshitz formulas, (1) and (12), to
calculate the thermal Casimir force. In the next section
it is also shown that the thermal Casimir force computed
using the impedance of the Drude model is in disagreement
with the experimental data of [20]. Thus, there is both the-
oretical and experimental evidence against the use of this
impedance function in the theory of the thermal Casimir
force.

6 Alternative results for the thermal
correction to the Casimir pressure
computed with different impedance
functions

In [64, 65] the contribution from the transverse electric
electromagnetic waves to the thermal correction ∆P (a, T )
was computed using the real frequency axis formalism and
the impedance function of the normal skin effect ZN(ω)
defined in (32). The computation was performed for Au
plates at room temperature with static conductivity σ0 =
3×1017 s−1 and relaxation time τ = 1.88×10−14 s. As was
noted in Sect. 3, the impedance function (32) can be ob-
tained from the dielectric function in the region of the nor-
mal skin effect, εN(ω), using (26), where the static conduc-
tivity is connected with the plasma frequency ωp by (34),

leading to ωp ≈ 9.3 eV. In [64, 65] the relatively large con-
tribution to the thermal correction from the TE waves
for a plate separation of a= 1 µm was obtained using the
impedance function (32). It is about 30 times larger than
the corresponding correction for ideal metals. This was ex-
plained by the increased role of the TE EW at low frequen-
cies. According to [66] the predicted increase of the thermal
correction at a = 1 µm is in conflict with previous theor-
etical work [43], which predicts even several times larger
magnitudes for the thermal correction calculated using the
dielectric permittivity ε ∼ ω−1 at low frequencies. In [66]
one concludes also that the prediction of [64, 65] is consis-
tent with the experimental data of [9] at a= 1 µm whereas
the prediction of [43] is excluded by that experiment.
Here we repeat the numerical computations of [64, 65]

for the contribution of the TE mode to the thermal cor-
rection to the Casimir force, using the impedance (32).
We also compute the contribution from the TM mode
and study the role of EW and PW in both contributions.
The computations are performed at different separations
using both formalisms along the imaginary and real fre-
quency axis (presented in Sects. 2 and 3) with practically
coinciding results. Although the thermal correction pre-
dicted from the impedance (32) is consistent with the long-
separation experiment [9] at 1 µm, it is shown to be ex-
cluded by the measurement of the Casimir force at shorter
separations by means of the micromechanical torsion oscil-
lator [20–23]. Because of this, we also discuss several other
forms of impedance function and find those consistent with
experiment.
For the purpose of comparison with experiment (which

is in fact consistent with the theoretical results for P0(a)
at T = 0 [20]), here we use in the computations a slightly
different value of the plasma frequency: ωp = 9.0 eV. The
thermal correction in the framework of the imaginary fre-
quency axis formalism was computed by (2), (5) and (9) for
two similar Au plates at T = 300K. The results are pre-
sented in Table 1 where column 1 contains the values of the
separation distance between the plates and column 2 the
values of the thermal correction. Precisely the same values
were computed using (18) of the real frequency axis formal-
ism. Note that although the magnitude of the thermal cor-
rection increases with the decrease of separation, the rela-
tive thermal correction becomes smaller at shorter separa-
tions. The same holds for metals described by the dielec-
tric permittivity of the plasma model [40, 41]. In column 3
of Table 1 the ratios of the thermal correction from col-
umn 2 to those for ideal metal (denoted by ∆P IMTE) are pre-
sented. Columns 4 and 5 contain the relative contributions
to the thermal correction from the TE EW and PW, re-
spectively, computed by using (20) and (21). In columns 6
and 7 the relative contributions from the TMEW and PW,
respectively, are presented. Here and below we perform
all computations at a ≥ 200 nm in order to remain well
inside the application region of the impedance approach.
For example, at a = 200 nm the characteristic frequency
of the Casimir force is ωc = c/(2a)≈ 7.5×1014 rad/s and
ZN(ωc) ≈ 1.4×10−2� 1. As is seen from columns 2 and
3 in Table 1, the magnitudes of the total thermal correc-
tion computed with the impedance function (32) are rather



712 V.B. Bezerra et al.: Thermal correction to the Casimir force and radiative heat transfer

Table 1. Thermal correction to the pressure between Au plates at T = 300 K (column 2) and differ-
ent contributions to it as a function of separation computed using the impedance of the normal skin
effect ZN. See text for further discussion

a (µm) ∆P (mPa) ∆P
∆P IM

∆PTE,EW
∆P

∆PTE,PW
∆P

∆PTM,EW
∆P

∆PTM,PW
∆P

0.2 –12.1 5.9×103 0.998 –9×10−5 2×10−3 –2×10−4

0.25 –5.4 2.6×103 0.997 –7×10−5 3.6×10−3 –2×10−4

0.3 –2.8 1.4×103 0.995 –3×10−6 5×10−3 –3×10−4

0.35 –1.6 7.8×102 0.994 1.5×10−4 6×10−3 –3×10−4

0.4 –0.96 4.7×102 0.992 5×10−4 8×10−3 –2×10−4

1 –0.032 16 0.91 0.03 0.03 0.02

large. At a separation distance of 1 µm the thermal correc-
tion for Au plates is found to be almost 16 times larger than
for the plates made of an ideal metal. This ratio quickly
increases with decreasing separation. At a separation of
200 nm it is as large as 5900. By the summation of the
values presented in columns 4, 5 on the one hand and 6, 7
on the other hand, one finds that the dominant contribu-
tions to ∆P are given by the TEmode, whereas the relative
contributions from the TM mode are negligibly small. The
largest value of the latter achieved at a = 1 µm is equal
to 0.05. Comparing columns 4 and 5 on the one hand and
6 and 7 on the other, we can conclude that the domin-
ant contribution to ∆PTE and ∆PTM is given by the EW.
If one considers only the contribution from the TE mode
discussed in [64], one obtains ∆PTE/∆P

IM
TE = 29.6 and

1.2×104 at separations a= 1 µm and 0.2 µm, respectively.
Now we compare the obtained magnitudes of the ther-

mal correction in column 2 of Table 1 with the experi-
ment [20]. For this purpose we need to obtain the total
magnitudes of the Casimir pressure at temperature T =
300K. The magnitudes of P0(a) can be most simply com-
puted using (9) and (27). However, use of the impedance
function (32) leads to incorrect values of P0(a). As an ex-
ample, using (32) one obtains |P0| = 716.5 and 144.6mPa
at separations 200 nm and 300 nm, respectively. At the
same time, the conventional magnitudes of P0 at these sep-
arations, obtained by different authors [83–85] are 507.5
and 113.6mPa, respectively, in drastic contradiction with
the above values obtained by the use of the impedance
(32). The reason is that the dominant contribution to P0
is given by the frequency region around the characteris-
tic frequency ωc, which does not belong to the region of
the normal skin effect, where the impedance function (32)
is appropriate, but to the region of infrared optics. On
the contrary, the magnitude of the thermal correction (18)
with the impedance function (32) is determined by much
lower frequencies, where (32) is applicable.
To compare the thermal correction in column 2 of

Table 1 with experiment, we add it to the conventional
magnitudes of the Casimir pressure at T = 0 specified
above. As a result, at separations of 200 and 300 nm one
obtains magnitudes of the thermal Casimir pressure equal
to 519.6 and 116.4mPa, respectively. These should be
compared with respective measured magnitudes of the
Casimir pressure at the same separations equal to 508.1
and 114.7mPa. The differences between the above theor-

etical and experimental values are 11.5 and 1.7mPa. They
lie outside the boundary of the half-width confidence in-
terval determined at 95% confidence (at separations of
200 and 300 nm the latter is equal to 8.6 and 1.6mPa,
respectively). Thus, the impedance function (32) is not
consistent with the measurement of the Casimir pressure
at short separations by means of a micromechanical torsion
oscillator [20–23].
The impedance ZN is applicable only at the low fre-

quencies specific for the normal skin effect. As was dis-
cussed in Sect. 3, the impedance of the Drude model (33)
provides a smooth interpolation between the regions of the
normal skin effect and infrared optics. At all frequencies
ω� ωp the impedance (33) can be represented in the form
(32) if one replaces σ0 on the right-hand side of (32) by the
ac conductivity defined as

σ(ω) =
σ0

1− iτω
. (72)

It is easily seen that the impedance of the Drude model
(33) leads to even larger magnitudes for the thermal cor-
rection to the Casimir pressure at short separations than
the impedance (32). At the separation a = 0.2 µm the
magnitude of the thermal correction computed with the
impedance (33) is equal to |∆P |= 14.7mPa, and its ratio
to the thermal correction for ideal metals is 7200. At a =
1 µm one obtains |∆P |= 0.0402mPa and ∆P/∆P ID = 20.
If one considers only the contribution from the TE mode,
one obtains ∆PTE/∆P

ID
TE = 37.4 (close to 36.5 obtained

in [65] for a bit different value of ωp = 9.3 eV whereas in
our computations here we use ωp = 9.0 eV). However, at
a ≈ 200 nm this ratio reaches the value ∆PTE/∆P IDTE ≈
14.3×103. As in the case of impedance function (32), the
increase of the thermal correction is due to the contribu-
tion from the TE EW.
In the same way, as before, it can be shown that the

large thermal correction predicted by the impedance (33) is
excluded experimentally. Thus, the theoretical magnitudes
of the Casimir pressure obtained by adding the thermal
correction to P0 are equal to 522.15 and 116.99mPa at
separations of 200 and 300 nm, respectively. By comparing
this with experiment we get the respective differences of
14.06 and 2.32mPa, which are far outside the boundary of
the 95% confidence interval presented above. [Notice that
the use of the Drude dielectric function from (33) with re-
flection coefficients (22) to compute the thermal Casimir
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force is inconsistent not only with the experiment reported
in [9] but with experiments of [19–23] as well.]
Bearing in mind that in the separation range from

200 nm to 1 µm the characteristic frequency Ωc = c/(2a)
belongs to the region of infrared optics, it is reasonable
to calculate the thermal correction to the Casimir pres-
sure using the impedance Zi defined in (31). Note that
the dielectric permittivity εi(ω) with the reflection coeffi-
cients (22) was first used to calculate the thermal Casimir
pressure in [40, 41]. It was shown that the dielectric permit-
tivity of the plasma model leads to small thermal correc-
tions to the Casimir pressure at short separations in qual-
itative agreement with the case of ideal metals. At large
separations it leads to the same result as for ideal metals in
accordance to the classical limit [80, 81].
The disadvantage of the impedance function (31) is

that it has zero real part at nonzero frequencies, i.e., it does
not take relaxation processes into account. At the same
time the tabulated optical data for the complex index of
refraction n in the region of infrared optics [82] lead to
a nonzero real part of the impedance function that, how-
ever, is much less than the magnitude of the imaginary
part. Unfortunately, the optical data at low frequencies are
not available. In addition, these data are burdened by large
errors and uncertainties. Because of this, any theoretical
result for the functional form of the impedance function is
of much value. Preserving only the first expansion orders
for both real and imaginary parts, a more accurate com-
plex impedance in the region of the infrared optics can be
approximately presented in the form [58]

Zp(ω) = Cω
2− i

ω√
ω2p−ω

2
, (73)

where the constant C = 0.004 eV−2 was chosen to provide
the best mean fit to the optical data for the real part of the
impedance within the frequency region from 0.125 eV to
5 eV. The impedance (73) disregards interband transitions,
but the real part of it takes into account electron–electron
collisions, which occur rather seldom in the region of in-
frared optics.
In Fig. 1, the imaginary (a) and real (b) parts of the

impedance (73) are shown by the solid lines as functions
of the frequency. In the same figure the imaginary (a) and
real (b) parts of the impedance are plotted by dots using
the expression Zp(ω) = 1/n(ω) and the tabulated opti-
cal data for n(ω) [82]. As is seen in Fig. 1b, in the region
ω ≤ 1.5 eV the analytic expression for the imaginary part
of the impedance (73) is in rather good agreement with the
data. This expression gives the major contribution to the
impedance along the imaginary frequency axis:

Zp(iξ) =−Cξ
2+

ξ√
ω2p+ ξ

2
. (74)

Then one can conclude that the approximation (74) is well
adapted for the computation of the thermal correction to
the Casimir pressure.
The computations were performed for Au plates by

using both the imaginary and real frequency axis for-

Fig. 1. Imaginary (a) and real (b) parts of the impedance of
infrared optics as functions of frequency. Solid lines are for the
analytical expression (73), dots correspond to the tabulated op-
tical data

malisms discussed in Sect. 2 with practically coinciding re-
sults for the total thermal correction and also for separate
contributions from the TE and TMmodes. When using the
real frequency formalism, some care is necessary in the nu-
merical integration of (20) and (21), because, due to the
smallness of the real part of Zi, there exist narrow reso-
nances in the spectrum of the thermal correction, corres-
ponding to the eigenfrequencies of a dissipationless cavity
with impedance Zi(ω). These considerations apply espe-
cially to the computation of ∆PTM,EW, because its spec-
trum has resonances also at thermal frequencies. These
results are presented in Table 2. In column 2 the magni-
tudes of the total thermal correction to the Casimir pres-
sure at different separations are listed. Column 3 contains
the ratios of the total thermal corrections for Au plates to
those for ideal metals. In column 4 the relative contribu-
tions from the TE EW to the total thermal correction are
shown. Column 5 contains the relative contributions from
the TE PW to the total thermal correction. Columns 6 and
7 contain the relative contributions to the total thermal
correction from the TM EW and TM PW, respectively. As
is seen from columns 2 and 3 in Table 2, the impedance of
infrared optics leads to much smaller thermal corrections
than the impedance of the normal skin effect, in qualita-
tive agreement with the case of ideal metals. From columns
4–7 it follows that the TE and TM modes lead to qualita-
tively similar contributions. The role of EW is also not so
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Table 2. Thermal correction to the pressure between Au plates at T = 300 K (column 2) and differ-
ent contributions to it as a function of separation computed using the impedance of infrared optics
Zp. See text for further discussion

a (µm) ∆P (mPa) ∆P
∆P IM

∆PTE,EW
∆P

∆PTE,PW
∆P

∆PTM,EW
∆P

∆PTM,PW
∆P

0.2 –0.0097 4.7 –0.76 0.10 1.55 0.1
0.25 –0.0081 4.0 –0.43 0.13 1.18 0.12
0.3 –0.0070 3.4 –0.26 0.14 0.97 0.14
0.35 –0.0059 2.9 –0.18 0.17 0.84 0.17
0.4 –0.0051 2.5 –0.13 0.20 0.73 0.20
1 –0.0026 1.3 –0.01 0.39 0.2 0.4

pronounced as it was for the impedance of the normal skin
effect.
The total thermal Casimir pressures obtained by the

summation of the thermal corrections in column 2 of
Table 2 and zero-temperature pressures are consistent with
all available experimental data. By way of example, at
a = 200 and 300 nm (where for the impedance of the nor-
mal skin effect the theoretical results were excluded at
95% confidence) the differences between theory and ex-
periment [20, 21] are now equal to −0.61 and −1.1mPa,
respectively, i.e., well inside the 95% confidence inter-
val. Note that the thermal Casimir force computed using
the dielectric permittivity (31) is also consistent with the
data [20]. The addition of a small imaginary part to εi(ω),
arising from the real part of the impedance in (73), leads
to only minor changes in the results of the computation,
which remain consistent with experiment.
Thus, the impedance of infrared optics of (74) leads

to reasonable results when applied to the thermal Casimir
pressure. In the following sections we are going to ap-
ply the impedance method to the computation of the ra-
diative heat transfer across a vacuum gap between two
parallel surfaces at different temperatures. As is shown
in Sect. 7 below, this process is mostly determined by the
real part of the impedance function, which is modeled not
precisely enough in (73) (see Fig. 1b). Bearing in mind the
computations of the radiative heat transfer, we introduce

Fig. 2. Real part of the impedance of infrared optics given by
the tabulated optical data (dots) versus frequency with differ-
ent extrapolations to low frequencies (the region between the
solid lines 1 and 2). See text for further discussion

one more the model impedance of infrared optics by the
equation

Zt(ω) =

⎧
⎪⎨

⎪⎩

B sin
(
πω2

2β2

)
ω ≤ β

B β ≤ ω ≤ 0.125 eV
Y (ω) ω ≥ 0.125 eV

⎫
⎪⎬

⎪⎭

− i
ω√
ω2p−ω

2
. (75)

Here Y (ω) stands for the tabulated optical data rep-
resenting the real part of the impedance [82], which are
available at ω ≥ 0.125 eV. The value of the constant B =
0.00389 is chosen such as to have a smooth transition be-
tween the optical data and their extrapolation to lower
frequencies. The unknown parameter β fixes the value of
the frequency where the behavior of ReZt, as given by the
optical data, is smoothly connected with the asymptotic
behavior at low frequencies. The upper bound of β is de-
termined by the fact that the optical data are available at
ω ≥ 0.125 eV. In the frequency region of infrared optics the
real part must be much smaller than the imaginary. The
reason is that at these frequencies electrons are almost free
and the electric current is pure imaginary. The small real
part of the impedance describes minor distortions in the
vibrational motion of electrons. Then it is reasonable to
impose the lower constraint on β as follows: 0.08 eV ≤ β.
This constraint is very conservative because it allows the
real part of the impedance to become as large as one half of
the imaginary part (a larger real part of the impedance in
the region of infrared optics is evidently inadmissible). The
real part of the impedance (75) as a function of frequency
is shown in Fig. 2, where line 1 corresponds to β = 0.125 eV
and line 2 to β = 0.08 eV. The region between lines 1 and 2
is allowed.

7 Heat transfer across an empty gap

We consider now the case of two semi-infinite plane paral-
lel metallic plates at different temperatures T1 > T2, sepa-
rated by an empty gap of width a. We are interested in esti-
mating the heat transfer between the plates. This problem
was first studied long ago by Rytov [86, 87], and later on it
was reconsidered by Polder and Van Hove [67], by Loomis
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and Maris [68] and by Volokitin and Persson [37, 38]. Re-
cently, it was studied by one of us [39] in the framework of
the surface impedance. The approach followed by Polder
and Van Hove is closely related to Lifshitz theory of the
van der Waals interactions between macroscopic bodies, in
that heat transfer is regarded as occurring via fluctuating
electromagnetic fields radiated by the two plates, whose
sources are the random thermal electric currents that are
present inside the plates. The fluctuation–dissipation theo-
rem is then used to determine the statistical properties of
the currents, from which the correlation properties of the
emitted electromagnetic fields are subsequently derived. In
the derivation, Polder and Van Hove made the following
assumptions, that are also at the basis of Lifshitz theory.

1. The wavelengths of the electromagnetic fields involved
should be large compared to the atomic distances, so
that the fluctuating fields can be well described by
means of the classical macroscopic Maxwell equations.

2. The electric currents at distinct points inside the plates
are uncorrelated.

3. The media are isotropic and nonmagnetic, such that
their electromagnetic properties can be described by
means of a complex dielectric permittivity ε(ω) that de-
pends only on the frequency.

4. The system is stationary in time, and each plate is in
local thermal equilibrium.

The resulting expression for the power (per unit area) S of
heat transfer from plate one to plate two was found using
the average value of the Poynting vector in the gap between
two plates [68]:

S =
4h̄

π2

∫ ∞

0

dωω

∫ ∞

0

dk⊥k⊥k
2
z |e
2ikza|

×

(
1

exp(h̄ω/kBT1)−1
−

1

exp(h̄ω/kBT2)−1

)

×

[
Re (s(1))Re (s(2))

XTE
+
Re (ε̄(1)s(1))Re (ε̄(2)s(2))

XTM

]
,

(76)

where

XTE =
∣∣∣
(
kz+ s

(1)
)(
kz+ s

(2)
)

−
(
kz− s

(1)
)(
kz− s

(2)
)
e2ikza

∣∣∣
2

,

XTM =
∣∣∣
(
ε(1)kz+ s

(1)
)(
ε(2)kz+ s

(2)
)

−
(
ε(1)kz− s

(1)
)(
ε(2)kz− s

(2)
)
e2ikza

∣∣∣
2

,

and

s(n)(ω, k⊥) =
√
ε(n)(ω)ω2/c2−k2⊥ = ik

(n)(ω, k⊥)

(77)

(note that our variable k⊥ is denoted q in [37, 38, 68]). We
now decompose S as the sum of the contributions from PW
and EW:

S = SPW+SEW . (78)

It is not hard to verify, starting from (76), that SPW and
SEW can be expressed in terms of the dielectric reflection
coefficients (24) as [37, 38]:

SPW =
h̄

4π2

∫ ∞

0

dωω

∫ ω/c

0

dkzkz

×

(
1

exp(h̄ω/kBT1)−1
−

1

exp(h̄ω/kBT2)−1

)

×
∑

α=TE,TM

[
1−

∣∣∣r(1)α (ω, k⊥)
∣∣∣
2
][
1−

∣∣∣r(2)α (ω, k⊥)
∣∣∣
2
]

∣∣∣1− r(1)α (ω, k⊥)r(2)α (ω, k⊥) exp(2ikza)
∣∣∣
2 ,

(79)

SEW =
h̄

π2

∫ ∞

0

dωω

∫ ∞

0

dqq

×

(
1

exp(h̄ω/kBT1)−1
−

1

exp(h̄ω/kBT2)−1

)

×
∑

α=TE,TM

Im r
(1)
α (ω, k⊥)Im r

(2)
α (ω, k⊥)e

−2qa

∣∣∣1− r(1)α (ω, k⊥)r(2)α (ω, k⊥) exp(−2qa)
∣∣∣
2 .

(80)

It is to be noted that, for r
(2)
α = 0, SEW = 0, while for

r
(2)
α = 0 and T2 = 0, the expression for SPW reduces to the
well known Kirchhoff formula for the flux of radiation Φ
from a surface with reflection coefficients rα = r

(1)
α at tem-

perature T = T1:

Φ(T ) =
1

4π2c2

∫ ∞

0

dω
h̄ω3

exp(h̄ω/kBT )−1

×

∫ 1

0

dpp
∑

α=TE,TM

(
1−|rα|

2
)
, (81)

where p= kz c/ω.
In [39] the power of heat transfer per unit area S was

computed within a general theory of electromagnetic fluc-
tuations for metallic surfaces, based on the concept of sur-
face impedance. This approach is closer to that originally
followed by Rytov [86, 87], in that the starting point of
the theory is an expression for the correlators of the elec-
tric and magnetic fields. However, according to the dictate
of impedance theory, in [39] the correlators are given only
outside the metal, while no consideration is made of ei-
ther the fields, or the electric currents in the interior of the
metal. The resulting expression for the heat transfer that
was found in [39] is

S =
4h̄c2

π2

∫ ∞

0

dω

ω
ReZ(1)(ω)ReZ(2)(ω)

×

(
1

exp(h̄ω/kBT1)−1
−

1

exp(h̄ω/kBT2)−1

)

×

∫ ∞

0

dk⊥k⊥|kz|
2|e2ikza|

(
1

BTE
+
1

BTM

)
, (82)
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where the quantities BTE/TM are defined as

BTE =
∣∣∣
(
1+kzcZ

(1)/ω
)(
1+kzcZ

(2)/ω
)

−
(
1−kzcZ

(1)/ω
) (
1−kzcZ

(2)/ω
)
exp(2ikza)

∣∣∣
2

,

(83)

BTM =
∣∣∣
(
kz c/ω+Z

(1)
)(
kzc/ω+Z

(2)
)

−
(
kz c/ω−Z

(1)
) (
kz c/ω−Z

(2)
)
exp(2ikza)

∣∣∣
2

.

(84)

If we separate the PW and EW contributions to (82), it is
easy to verify that (78)–(80) are equivalent to (82)–(84) in
the impedance theory of heat transfer, provided that the
reflection coefficients are taken to be those of impedance
theory in (28).

8 Numerical results for heat transfer
and emittivity

It should be noted that, according to (82), the value of S
is very sensitive to the real part ReZ(ω) of the impedance
function, at angular frequencies ω of the order of kBT/h̄. It
is also important to observe that at small separations a, S
receives a large contribution from the EW. Since, as seen
from Table 1, thermally exited EW are of great importance
for the determination of the thermal correction ∆P (a, T )
to the Casimir pressure, it is clear that a measurement of
S would provide an independent verification of the valid-
ity of the impedance function used in the evaluation of
∆P (a, T ). We have estimated numerically the heat trans-
fer S for three choices of the impedance functions, ZD, ZN
and Zt, that were discussed in Sect. 6. In Fig. 3, we show

Fig. 3. Plots of radiative heat transfer between two Au plates
at temperatures T1 = 320 K and T2 = 300 K, as a function
of separation, according to Lifshitz theory for ε = εD (short-
dashed line), and to impedance theory for three different
choices of impedance: Z = ZN (long-dashed line), Z = ZD (dot-
ted line) and Z = Zt (band between the solid lines 1 and 2). See
text for further explanation

plots of the radiated power for two plates of Au as a func-
tion of the separation a for T1 = 320K and T2 = 300K.
The three lines are for the standard Lifshitz theory with
the Drude dielectric function in (33) (short-dashed line),
for the impedance theory with the impedance ZN of the
normal skin effect in (32) (long-dashed line), and again for
the impedance theory, but this time with the impedance
ZD corresponding to the Drude model in (33) (dotted line).
The band between the solid lines 1 and 2 is related to the
impedance function Zt in (75), with the upper and lower
boundaries corresponding to β = 0.08 eV and β = 0.125 eV,
respectively. The line for Z = Zp in (73) is not displayed,
because it reproduces ReZp inaccurately and the corres-
ponding values for S are over two orders of magnitude
smaller than those for, say, Zt. Note that the dielectric
permittivity approach with ε corresponding to Zt leads
to almost the same results as are presented by the band
between the solid lines 1 and 2 in Fig. 3. The only differ-
ence is that at short separations lines 1 and 2 are a bit
shifted towards smaller values of S, while preserving the
same asymptotic values at large separations. As we see, Lif-
shitz theory using the dielectric permittivity εD, as well as
the impedance theory for Z =ZD and Z =ZN, both lead to
values for S that are several times larger than those implied
by the impedance Zt or respective dielectric permittivity,
for separations around or less than half micrometer. To
a large extent, these large differences are due to consider-
ably different contributions from the TE EW in the various
models. In Fig. 4, we show a plot of the relative contribu-
tion to S from TE EW, for the models considered in Fig. 3.
As we see, the TE EW play an important role in the entire
range of separations considered.
Besides heat transfer, another interesting quantity to

consider is the total emittivity e(T ) of the metal, defined as

e(T ) =
Φ(T )

ΦBB(T )
. (85)

Here, Φ(T ) is the total flux of radiation from a unit sur-
face of a metal defined in (81), while ΦBB(T ) is the flux

Fig. 4. Plots of the relative contributions of TE EW to the
total radiative heat transfer between two Au plates at tempera-
tures T1 = 320 K and T2 = 300 K as a function of separation.
Lines are notated as in Fig. 3
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Table 3. Values of the emittivity e of Au at T = 295 K

Measured Lifshitz Z = ZN Z = ZD Z = Zt Z = Zp
(ε= εD)

0.02 0.0098 0.023 0.0098 0.013–0.016 2.5×10−4

from a black body. According to the Stefan law, the latter
quantity is equal to

ΦBB(T ) =ΘT
4 , (86)

where Θ = 5.6704×10−8Wm−2K−4. For a polished sur-
face of gold at T = 295K, the tabulated value is e≈ 0.02.
In Table 3 we report the calculated values for e, corres-
ponding to the same models as considered in Fig. 3. The
interval of values for e, appearing in the fifth column in
the case of Z = Zt, is related to the values of β considered
in Fig. 3, with the lower and upper values of e correspond-
ing to β = 0.125 eV and β = 0.08 eV, respectively. As is seen
in Table 3, the measured emittivity is better described by
the impedance of the normal skin effect and by the gener-
alized impedance of the infrared optics Zt. However, any
definite conclusion is impossible without information on
the precision of the emittivity measurements.

9 Conclusions and discussion

In the first part of this paper we have implemented the
thermodynamic test for two different choices for the sur-
face impedance of a metal that are used in the theory
of the thermal Casimir force. By making analytic per-
turbation expansions in powers of small parameters, we
have obtained the asymptotic expressions for the free en-
ergy and entropy of a fluctuating field at low tempera-
tures. This was done by using the Leontovich impedances
of the infrared optics Zi and of the Drude model ZD.
The Leontovich impedance of the infrared optics, extrap-
olated to low frequencies, withstood the thermodynamic
test. The obtained asymptotic expressions for the free en-
ergy and entropy of a fluctuating field are found to be
thermodynamically consistent. In particular, the entropy
becomes zero when temperature vanishes, i.e., the Nernst
heat theorem is satisfied. On the other hand, the Leon-
tovich impedance of the Drude model was shown to be
thermodynamically inconsistent. In the case of metals with
perfect crystal lattices the entropy at zero temperature was
found to be positive and depending on the parameters of
the system, in violation of the Nernst heat theorem.
The above conclusions provoke two questions on how to

correctly apply thermal quantum field theory in Matsub-
ara formulation to real materials. Both the result of this
paper and of [45–47] on the thermodynamic inconsistency
of ZD and εD, respectively, in the theory of the thermal
Casimir force were obtained by using the idealization of a
perfect crystal lattice of a metal. In the presence of impu-
rities there is a nonzero residual relaxation at T = 0, i.e.,
γ(0) �= 0. As a result, at very low temperatures the first

Matsubara frequencies may become less than γ(0) and the
entropy jumps steeply to zero. For metals with impuri-
ties, described by the dielectric permittivity of the Drude
model, the vanishing of the entropy at T = 0 was demon-
strated in [48, 49]. This, however, does not solve the prob-
lem arising for metals with perfect crystal lattices. Such
metals have a nonzero relaxation γ(T ) at nonzero T and
are commonly used as the basic model in the theory of
electron–phonon interactions. For perfect crystal lattices
with no impurities the Nernst heat theorem is proved in the
framework of quantum statistical physics [79], and the vio-
lation of this theorem by the entropy of a fluctuating field
is a problem of great concern. It is our opinion that the vi-
olation of the third law of thermodynamics by the Casimir
entropy calculated using εD and ZD warns as to the inap-
plicability of the Drude model in the theory of the thermal
Casimir force.
Another question to discuss is the physical meaning of

the zero Matsubara frequency in the Lifshitz formula, (1),
or of low frequencies in the equivalent form of it, (12), ex-
pressed in terms of real frequencies. Should the analytic
expression for the impedance of a metal that is valid for fre-
quencies around the characteristic frequencyΩc be extrap-
olated without modifications to quasistatic frequencies,
as we did in Sect. 4, where we dealt with the impedance
of infrared optics? Or, alternatively, should one use dif-
ferent impedance functions within different frequency re-
gions in accordance with their applicability conditions?
The latter approach was in fact used in Sect. 5, because
the impedance of the Drude model coincides with the
impedance of the infrared optics in the region of infrared
frequencies around Ωc and with the impedance of the nor-
mal skin effect in the region of quasistatic frequencies. Our
results demonstrate that in spite of different impedance
functions in accordance with the frequency regions of their
applicability being rather natural to use, and not use any
extrapolation, the actual situation is not so simple. As is
shown in Sect. 4, the extrapolation of the impedance of
infrared optics to zero Matsubara frequency satisfies the
thermodynamic test, whereas the use of the Drude model
impedance in Sect. 5, coinciding with the impedances of
the normal skin effect and infrared optics in the appro-
priate frequency regions, violates thermodynamics. This
should be compared with the results of [51–55] devoted
to the Casimir interaction between two dielectrics and be-
tween metal and dielectric. In both cases the account of an
actual dielectric response at quasistatic frequencies (i.e.,
the account of nonzero dc conductivity) results in contra-
diction with thermodynamics, whereas the extrapolation
of the dielectric behavior at high frequencies to zero fre-
quency satisfies the thermodynamic test. This leads us to
argue that the response function of both a metal and a di-
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electric to a real external electromagnetic field of very low,
quasistatic, frequency is not related to the physical phe-
nomenon of dispersion forces determined by the electro-
magnetic fluctuations of high frequencies. In terms of the
physical processes occurring at different frequencies the
above discussed extrapolation would imply that in metal
bodies the fluctuating electromagnetic field creates only
pure imaginary currents related to the frequency region of
infrared optics. However, if the characteristic frequency be-
longs to the region of infrared optics, real currents with
typical frequencies of the normal skin effect cannot be cre-
ated by the fluctuating field. The deeper understanding
of these guesses may go beyond the scope of the Lifshitz
theory.
In the second part of this paper we have performed

a comparative phenomenological investigation of the ther-
mal Casimir force between two parallel metal plates and
of the radiative heat transfer that occurs between such
plates when they are kept at different temperatures. The
two phenomena are of the same physical nature, because
they are caused by electromagnetic fluctuations. As was
discussed above, the problem of the thermal Casimir force
meets with difficulties, and different controversial approa-
ches to its resolution were proposed in the literature. These
approaches are based on the use of various dielectric func-
tions (the dielectric permittivities of the Drude and of
the plasma model) or, alternatively, different forms of the
Leontovich surface impedance. The selection between the
approaches is done by the comparison of the obtained re-
sults with the requirements of thermodynamics and with
the experimental data. In this paper we have demonstrated
that the use of the impedance functions ZN(ω) and ZD(ω)
(constructed using the dielectric permittivities of the nor-
mal skin effect and of the Drude model) to calculate the
thermal correction to the Casimir force leads to contra-
diction with experiment at separations of a few hundred
nanometers. Recall that previously the use of the dielectric
permittivity of the Drude model to calculate the thermal
correction was also shown to be inconsistent with experi-
ment. At the same time, both the dielectric permittivity
of the plasma model and the corresponding impedances re-
lated to the region of infrared optics are consistent with
experiment.
The radiative heat transfer between two plates was

previously studied using the dielectric permittivity of the
Drude model [37, 38, 67, 68] and the related impedance
ZD(ω) [39]. These approaches, however, lead to a contra-
diction with experiment in the case of the thermal Casimir
force. Because of this, it is of much interest to investigate
the radiative heat transfer using the impedance of infrared
optics. Lack of reliable experimental data for the power of
heat transfer and the resulting uncertainty with the experi-
mental confirmation of the computations in [37–39,67, 68]
add importance to this aim.
Bearing in mind that the radiative heat transfer is very

sensitive to the real part of the impedance function we
have constructed the new impedance Zt in the region of in-
frared optics. The real part of this impedance takes into
account the tabulated optical data for the complex index
of refraction extrapolated to low frequencies in accordance

with general theoretical requirements. The power of heat
transfer calculated with this impedance is several times less
than previous predictions at separations of a few hundred
nanometers. These large differences are mainly explained
by different contributions from the TE EW in the various
models of a metal.
Both the physical phenomena of the thermal Casimir

force and of the radiative heat transfer are finding prospec-
tive applications in nanotechnology. This makes it urgent
to carry out new precise experiments in order to find what
characterization of real metals is most adequate for the de-
scription of electromagnetic fluctuations.
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